
CIE2011 4

Parallel particle swarm optimization using
GPGPU

 Ing. Iliana Castro Liera, Dr. Marco Antonio Castro Liera, M.C. Jesús Antonio Castro

Abstract—This work presents a parallelization method for the
Particle Swarm Optimization algorithm using a low-cost
architecture: a General Purpose Graphics Processing Unit
(GPGPU). The strategies to better suit the architecture main
characteristics are addressed along success rates and
convergence times for the optimization of Rastrigin’s and
Ackley’s functions on a 30-dimensional search space, and
compared with results previously obtained using a cluster
implementation.

Index Terms—CUDA (Compute Unified Device Architecture),

Evolutionary computation, Parallel architectures, Particle swarm
optimization.

I. INTRODUCCIÓN
The present work deals with a parallel implementation of a

population-based optimization algorithm known as Particle
Swarm Optimization (PSO).

Nowadays, parallel applications development is not
confined to big and expensive equipments anymore. In recent
years practically all new models of personal computers are
built around multi-core processors. In some cases, those PCs
are equipped with advanced graphic processors with the
ability of performing general purpose computation (GPGPU).
[1][2].

Particle swarm optimization is a heuristic, population-based
local search algorithm first proposed by Russ C. Eberhart and
James Kennedy in 1995 [3].

PSO is based on the behavior of insect swarms and bird

flocks when searching for food or escaping from predators.
Some of the attractive features of PSO include the ease of
implementation and the fact that no gradient information is
required [3][4].

Each particle in the swarm has memory of its current
position, speed and fitness, and his best historical position and
best historical fitness.

The algorithm starts with a randomly generated set of
particles called a swarm, and then each particle calculates his
speed using (1) and his new position using (2) for each
dimension d through a previously chosen number of
generations.

 (1)

Where xh represents each particle’s historical best position,
w an inertial weight, c1 the confidence on self information and
c2 it’s confidence on social information. r1,r2 are randomly
generated numbers on the interval [0,1].

 (2)

If global (gbest) strategy is employed, xg represents the best

position of the entire swarm, whereas for local strategy (lbest)
xg represents the neighborhood’s best position. In general,
gbest strategy tends to converge faster, but is more likely to
become trapped on local optimum regions than lbest.
Additionally gbest can be viewed as a special case of lbest
where the neighborhood size is the entire swarm [4].

xi , d (t+ 1)= xi , d (t)+ vi , d (t+ 1)

II. GPGPU IMPLEMENTATION

A. Compute Unified Device Architecture (CUDA)
CUDA is a GPGPU technology developed by NVIDIA in

2006 with the launch of the GeForce GTX 8800 card, few
months later, the CUDA C compiler was released to the public
enabling programs to perform parallel general calculations
over advanced graphics processing cards. CUDA architecture
is represented on Fig. 1.

The elements of the CUDA architecture are: Threads, that
execute functions designed to run simultaneously and have
their own memory space, Blocks that are formed by a set of
threads and include a shared memory area for their threads
communication, Grid, which includes all the blocks executed
on a single Device and includes memory areas common to all
blocks. (Fig. 1)

Fig. 1. CUDA architecture.

A function running in the GPU is called a kernel. When a
kernel is launched, is necessary to inform the GPU how many
blocks (BLK), and threads (THR), will be running on the
GPU using the following syntax:

kernel_name<<<BLK,THR>>>(parameters);

The GPU organizes work on its multiprocessors as shown

vi ,d(t+ 1)= w�vi , d (t) + c1 r1(xhd− xid) + c2 r 2(xgd− xid)

CIE2011 4

on fig. 2. It is important to use a multiple of the available
amount of multiprocessors as the BLK parameter to avoid
unused resources.

Fig.2. More multiprocessors execute in less time same amount of blocks

To better suit this particular architecture, a smaller swarm

size is assigned on each block launched on the GPU. A thread
is responsible to process a single particle of a swarm as
depicted on Fig 3.

Fig. 3. A t particles swarm was processed on a block.

Single particle was assigned to a thread.

A migration process occurs every PMB generations, where
the best position of each swarm is informed with a ring
topology on block launched as seen on Fig. 4.

Fig. 4. Best position is informed to next block every PMB generations.

The following pseudo-code illustrates the task assignation

and shows which parts are executed on to CPU and GPU
respectively:

CPU:
Launch kernel to Create BLK swarms
for i = 1 to GMAX/PMB
 Launch kernel Pso
 Launch kernel Migration
receive the best position from BLK swarms
Display the best overall position as the
solution of the optimization problem

GPU:
G = 0;
KERNEL Create
for i=1 to P
 initialize Xi, Vi and Fi

KERNEL Pso
while (G<PMB)
 G = G+1
 for i=1 to Swarm_size
 calculate Xi fitness F(Xi)
 if F(Xi) is better than F(Xhi) then
 Xhi = Xi
 for i = 1 to Swarm_size
 choose gbest form swarm
 update Xi speed Vi
 update Xi position

KERNEL Migration
Inform best position to (BlockId+1) mod BLK

B. Test Functions
Rastrigin’s and Ackley’s functions, two of the Competence

of Evolutionary Computation (CEC’05) problems [4], where
used to test the proposed algorithm.

Rastrigin’s function (3) is a scalable, separable, multi-
modal problem, it has a known global optimum on the origin
and a huge number of local optima’s, the defined search space
was [-5,5]D in accordance to the CEC’05

 (3) x)=

D

∑
i= 1

(xi
2− 10 cos (2Π xi)+ 10)

Ackley’s function (4) is a multi-modal non-separable and

scalable problem, it has a known global optimum on the origin
and very small decreasing area around the optimum, the
defined search space was [-32,32]D in accordance to the
CEC’05, where D represents the number of dimensions of the
search space.

 (4) f (x)=− 20 exp (− 0.2

C. Parameter Determination
Several works [5]-[7] have dealt with the PSO parameter

determination problem, confidences and inertial weights of
c1=c2=1.62, w=0.8 are recommended and produced good
results for all our tests.

Based on results obtained by Castro et. al.[8], a migration
period of 1% of the total generations number was used.

III. RESULTS
A 30-dimension Rastrigin’s function (3) was minimized

using 21 swarms with a swarm size of 128 particles over
68,000 generations Table I shows that 100% success rate
results were obtained for all admissible error limits using the

√

f (

1
D

D

∑
i= 1

xi
2)− exp (1

D

D

∑
i= 1

cos (2Π xi))+ 20+ e

CIE2011 4

680 generations migration period (1% of the total generations
number).

TABLE I

SUCCESS RATE PERCENTAGES OF RASTRIGIN’S

Ackley’s function, (4) was optimized for a 30-dimensional
search space, using 70 swarms with a swarm size of 8
particles over 30,000 generations. Table II shows that 100%
success rate was obtained using the 300 generations migration
period (1% of the total generations number) which is
consistent with the previous case.

TABLE II
SUCCESS RATE PERCENTAGES OF ACKLEY’S

Tests were conducted using version 3.2 of CUDA C

Libraries on Visual Studio 2008 API, using Windows 7 32
bits on computer equipped with Intel Core i5 650 @ 3.20GHz,
4 GB RAM, 1333 MHz, and GPU NVIDIA GeForce GTX
460 1GB total memory, 7 multiprocessors and 336 CUDA
cores.

The best result reported by Castro et. al. [8] on a cluster
using a fast-ethernet switch with 16 2.8GHz Intel E7400 2
cores processor computers, using Fedora 14 and PVM 3.4.5
with gcc 4.5.1.4 for Rastrigin Function using 32 swarms of
100 particles over 25,000 generations, migration period of 250
and lbest strategy with neighborhood size of 20%, was:
Success rate percentage (1e-6), 100; Execution Time, 8.2s.
And for Ackley’s function using 32 swarms of 100 particles
over 6,000 generations, migration period of 60 generations
and lbest strategy with neighborhood size of 20%, was:
Success rate percentage (1e-6), 100; Execution Time, 2.0s
with 16 computers, 3.95s with 8 computers.

IV. CONCLUTIONS AND FUTURE WORK
The proposed implementation is a very good option for

parallel processing of PSO, considering it is not as expensive
as other alternatives (clusters or supercomputers) and for the
Rastrigin problem it’s faster than a 16 computers cluster and
for the Ackley problem it’s faster than a 8 computer cluster
according to the results obtained by Castro et. al.[8].

Currently, work is being done on the implementation of
Genetic Algorithms on this architecture and comparing its
efficiency against PSO for different problems.

This year, a new competence for real-world numeric
optimization problems is been held and the proposed
algorithms can be modified to solve the proposed problems
[9].

REFERENCES
[1] Nvidia Corp, “CUDA Architecture Introduction & Overview”, Nvidia

Corp, Santa Clara, California Version 1.1, april 2009, 3pp.
[2] Sanders, J. and kandrot, E. “Cuda by Example. An Introduction to

General-Purpose GPU Programming”, 1 ed. 2010, Ann Harbor,
Michigan, Pearson, 290 pp.

[3] Kennedy, J. and Eberhart, R. (1995), “Particle Swarm Optimization”,
Proc. 1995 IEEE Intl. Conf. on Neural Networks, pp. 1942-1948, IEEE
Press.

[4] Sugatan, P.N. et al “Problem Definitions and Evaluation Criteria for the
CEC 2005 Special Session on Real-Parameter Optimization”, KanGAL,
Tech. Rep 2005005, Nanyang Technological University, Singapore.,
May 2005.

[5] Van de Berg, F. “An Analysis of Particle Swarm Optimizers”, PhD
Dissertation Faculty of Agricultural and Natural Science, Pretoria
University, Pretoria South Africa, November 2001.

[6] Clerc, M. “Particle Swarm Optimization”, 1st English Ed. Newport Beach
ISTE, 2006

[7] Mussi, L Daolio, F and Cagnoni, S., “GPU-based Road Sign Detection
Using Particle Swarm Optimization”, 9th International Conference on
Intelligent Systems Design and Applications, 2009

[8] Castro, M.A. Morales, J.A. Castro, I. Castro, J.A. and Cárdenas L.A.,
“Distributed Particle Swarm Optimization Using Clusters and GPGPU”,
send for publication on I Congreso Internacional de Ingeniería
Electrónica y Computación 2011. Minatitlán, Veracruz, México.

[9] Swagatam, D, and Sugatan, P.N “Problem Definitions and Evaluation
Criteria for the CEC 2011 Competition on Testing Evolutionary
Algorithms on Real World Optimization Problems”, Dept. of Electrical
Communications Engg, Jadavpur University, Kolkata 700 032, India and
School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore 639798, Singapore., December 2010.

Iliana Castro Liera Is a full time titular professor at the Technological
Institute of La Paz, she obtained his engineering
degree on Computer Systems from the
Technological Institute of La Paz, and is currently
on a sabbatical year working on a masters degree
thesis regarding implementation of parallel
population-based optimizations algorithms using
GPGPU. iliana.castro@gmail.com

Marco Antonio Castro Liera Obtained his Ph.D
from the Central University “Marta Abreu” of Las
Villas, in Santa Clara, Cuba.

His employment experience includes the
Transport and Communications Secretary, Baja
California Sur Autonomous University and currently
holds a titular position at the Postgraduate Studies
and Research Division of the La Paz Technological
Institute in La Paz, México. Professor Castro has
published his work on Genetic Algorithms,
Distributed Computing, and Systems Identification

on several international events and arbitrated and indexed periodicals.
mcastroliera@gmail.com

Jesús Antonio Castro Obtained his masters degree from UNAM, and

currently holds a titular professor position at the
Postgraduate Studies and Research Division of the
La Paz Technological Institute where he teaches
Distributed Processing and Systems Software.
castroli48@gmail.com.

mailto:iliana.castro@gmail.com
mailto:mcastroliera@gmail.com
mailto:castroli48@gmail.com

	I. INTRODUCCIÓN
	II. GPGPU Implementation
	A. Compute Unified Device Architecture (CUDA)
	B. Test Functions
	C. Parameter Determination

	III. results
	IV. Conclutions and Future Work

