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Abstract—The development of new technologies for the design of 

DNA microarrays has boosted the generation of large volumes of 

biological data, which requires the development of efficient 

computational methods for their analysis and annotation. On these 

sets of data, the bicluster construction algorithms attempt to 

identify coherent associations of genes and experimental 

conditions. In this paper, we introduce an improved version of a 

multi-objective genetic algorithm to find large biclusters that are, 

at the same time, highly homogeneous. The proposed improvement 

uses a group based representation for the genes-conditions 

associations rather than long binary strings. To assess the 

proposal performance the algorithm is applied to generate 

biclusters for two real gene expression data: Saccharomyces 

Cerevisiae with 2884 genes and 17 conditions, and the human B 

cells Lymphoma with 4096 genes and 96 conditions. The results of 

computational experiments show that the proposed approach 

outperforms current state-of-the-art algorithms on these data sets.  

Keywords- biclustering; gene expression; multi-objective 

genetic algorithm; group based representation; microarray DNA. 

I.  INTRODUCTION 

The increased use of microarray technology has 
generated a large volume of biological data, which 
necessitates the development of efficient computational 
methods for their functional interpretation. To address this 
challenge many techniques have been proposed. Among 
them, clustering has become one of the most used 
approaches as a first step in the work of discovering new 
knowledge. However, the results of clustering methods 
applied to genes have been limited. This limitation makes it 
difficult to analyze the expression of genes for a given set of 
experimental conditions, mainly because the expression 
patterns do not associate the genes over all conditions, rather 
on a subset of them. To overcome this situation various 
algorithms have been proposed to cluster genes and 
conditions simultaneously. These algorithms are called 
bicluster algorithms and have the aim to identify groups of 
genes that exhibit a high correlation across a set of given 
conditions. 

The search for biclusters in gene expression data is a very 
attractive computational challenge. There are a vast amount 
of methods proposed to deal with this problem. The work of 
Cheng and Church [1] is of much relevance since it 
introduces the concept of bicluster applied to the analysis of 

gene expression for the first time, and proposed an original 
algorithm for its construction.  Despite some limitations, as 
discussed by Rodriguez et al. [2] and by Aguilar [3], this 
algorithm been used as a benchmark for evaluating and 
comparing the performance of a wide variety of more recent 
and elaborated algorithms. 

Madeira and Oliveira [4] presented a classification of 
biclustering methods mainly based on two aspects: i) the 
type of biclusters that the algorithms are able to find, and ii) 
the computational technique used. There are algorithms that 
seek biclusters with constant values, e.g. the mClustering [5], 
based on a divide and conquer approach, and the DCC [6] 
that uses a combination of clustering of rows and columns. 
Other methods identify biclusters with columns or rows with 
constant values, such as the CTWC [7], the δ-Patterns [8], 
which is a greedy approach, and Gibbs [9]. Some methods 
such as δ-biclusters [1] and FLOC [10, 11], use greedy 
approaches, the pClusters [12] uses exhaustive search, Plaid 
Models [13] and PRM [14, 15] are based on the 
identification of probability distribution parameters. There 
are also methods that seek biclusters with patterns of 
coherent evolution such as OPSMs [16] and xMotifs [17], 
both using a greedy search, and SAMBA [18] and OP-
Clusters [19], which perform exhaustive search. 

Rodriguez et al. [2] add to this classification methods that 
use stochastic search. In this branch, algorithms such as the 
SEBI [20] and Simulated Annealing [21] are included. 

Despite the existence of a large number of biclustering 
algorithms, there are still many significant challenges to 
overcome [2]: 

 The scarce information available to define the type of 
specific biclusters to search. 

 The amount of noise in the data matrices. 

 The large computation time due to the complex 
calculations often required. 

 Missing data in the input matrices. 

 The existence of user parameters that strongly 
influence the final results. 

 The scarce number of assessment methods for the 
generated results. 



 The multi-objective nature of the problem, since the 
MSR and the bicluster size, must be optimized at the 
same time. 

In this paper, we introduce an improved version of a 
recently proposed evolutionary algorithm for the biclustering 
problem. The improvement uses a more appropriate 
representation and its corresponding genetic operators. The 
biclusters are represented by two sequences, one represents 
the genes and the other the conditions which are present in 
the bicluster. The algorithm seeks to simultaneously 
minimize a homogeneity measure of the bicluster known as 
MSR, and to maximize the bicluster size. To show the 
effectiveness of the proposed approach a set of experiments 
are performed on two reference sets data (Yeast 
Saccharomyces cerevisiae and Human Lymphoma B-cells). 
The next section formally defines the problem to solve. 

II. BICLUSTERING ANALYSIS OF GENE EXPRESSION 

Cheng and Church [1] introduced the concept of bicluster 
within the context of gene expression data analysis. A 
bicluster is a subset of genes along with a subset of 
conditions with a high level of similarity. The similarity is 
considered as a consistency measure between genes and 
conditions in the bicluster. 

Within this context, we can define biclustering as the 
process of grouping genes and conditions simultaneously, 
searching for biclusters of maximum size and maximum 
similarity within a data matrix of gene expression. 

Madeira and Oliveira [4] present a formal definition of 
the bicluster problem. The input data is defined by a matrix A 
of n by m, where each element aij is a real value. In the case 
of gene expression arrays, aij represents the level of 
expression of gene i under condition j.  

The matrix A with n rows and m columns is defined by 
its set of rows, X = {x1,…,xn} and its set of columns, Y = 
{y1,…,ym}. (X, Y) is used to denote the matrix A. If I ⊆ X and 
J ⊆ Y are subsets of rows and columns of A,  respectively, 
then AIJ = (I, J), which denotes the submatrix AIJ of A 
containing only the elements aij that belong to the submatrix 
with the set of rows I and the column set J.  

Given the matrix A, a cluster of rows is a subset of rows 
that have a similar behavior through the set of all columns. 
This means that a cluster of rows AIY = (I, Y) is a subset of 
rows defined by the set of all columns Y, where I = {i1,…,ik} 
is a subset of rows I ⊆ X and k ≤ n. A cluster of rows (I, Y), 
can thus be defined as a submatrix k by m of the data matrix 
A. Similarly, a cluster of columns is a subset of columns 
which have a similar behavior across the set of all rows. A 
cluster AXJ = (X, J) is a subset of columns defined on the set 
of all rows of X, where J = {j1,…,js} is a subset of columns (J 
⊆ Y and s ≤ m). A cluster of columns AXJ = (X, J) can be 
defined as a submatrix of n by s of the data matrix A. 

A bicluster is a subset of rows that have a similar 
behavior through a subset of columns, and vice versa. The 
bicluster AIJ = (I, J) is a subset of rows of X and a subset of 
columns of Y, where I = {i1,…,ik} is a subset of rows (I ⊆ X 
and k ≤ n),  and J = {j1,…,js}  is a subset of columns (J ⊆ Y 

and s ≤ m). A bicluster (I, J) can be defined as a submatrix of 
k by s of the data matrix A. 

The specific problem addressed by the biclustering 
algorithms is defined as: given a data matrix A it is required 
to identify a set of biclusters Bk = (Ik, Jk) such that each 
bicluster Bk satisfies some property of homogeneity. The 
exact features of homogeneity of biclusters vary according to 
the statement of the problem. 

In this work we concentrate on optimizing two properties 
of the bicluster: 

 
i) The homogeneity G(I, J) of bicluster (I, J) is 

expressed as a mean squared residue (MSR) 
score defined as: 
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ii) The bicluster size |B| = | |  | | 
The MSR has to be minimized while the bicluster size 
maximized.  
Although the complexity of the biclustering problem 

depends on the exact formulation of the problem, and 
specifically the function used to evaluate the quality of a 
bicluster, the variant analyzed here is NP-hard. 

III. RELATED WORK 

Recently there have been several algorithms based on a 
variety of techniques to find biclusters, for example, BBC 
[22], Reactive GRASP [23], RAP [24], GS Binary PSO [25] 
and TreeBic [26], among others. 

In general, it is difficult to evaluate and compare 
biclustering methods, since the obtained results strongly 
depend on the scenario under consideration. Prelic et al. [27] 
present an evaluation and comparison of five outstanding 
methods. The evaluated methods are: CC [1], Samba [18], 
OPSM [16], ISA [28, 29] and xMotif [17]. To evaluate the 
methods both artificial and real data sets are used. The 
artificial data include biclusters with constant and additive 
values. Also, a systematic increase in noise with an 
increasing overlap between the created biclusters is 
considered. As for the real data, biological information takes 
into account GO annotations [30, 31], maps of metabolic 
pathways [31], and information on protein-protein 
interaction [32, 31]. In general, the methods ISA, Samba and 
OPSM perform well. While some methods perform better 
under certain scenarios, they show lower performance in 
others. 

Mitra and Banka [33] introduce a multiobjective 
evolutionary algorithm (MOEA) with the addition of local 
search. The objective is to find large size biclusters, with 
MSR values below a predefined threshold. Their method was 
evaluated using two sets of gene expression data referenced 
in the literature: Saccharomyces Cerevisiae and Human B 



Cell Lymphoma. The yeast data they use is a collection of 
2884 genes under 17 conditions, with 34 null entries 
identified with value -1, indicating a missing value. The 
expression data of Human B cells [34] contains 4026 genes 
under 96 conditions, with 5.08% of missing values. The 
results of this method are compared with FLOC [11], DBF 
[35] and CC [1], using as comparison criteria the MSR, and 
the size of the biclusters obtained by each method. In 
addition, they determined the biological significance of the 
biclusters in connection with information on the yeast cell 
cycle. The biological relevance is evaluated based on the 
statistical significance determined by the GO annotation 
database [36]. As for the comparison based on the MSR and 
the size of the biclusters obtained, the MOEA results  
outperform  the ones generated by other methods. 

Dharan and Nair [23] proposed the Reactive GRASP 
method. Statistical significance of the generated biclusters is 
assessed to see how well they correspond with the known 
gene annotation [33]. For this purpose the package SGD GO 
gene ontology term finder [36] is used. The performed tests 
show that the Reactive GRASP is able to find biclusters with 
higher statistical significance than the basic GRASP [23] and 
the CC [1] methods. 

Das and Idicula [25] propose a greedy search algorithm 
combined with PSO (GSPSO). The tests are conducted on 
expression data of the cell cycle of the Yeast Saccharomyces 
Cerevisiae. The data used is based on [34], and consists of 
2884 genes under 17 conditions. The results are compared 
with those of SEBI [20], CC [1], FLOC [11], DBF [35], and 
Modified Greedy [25]. The comparison criteria are the MSR 
(named as MSE) presented by [1], and the bicluster size. The 
GS Binary PSO outperforms the other methods, except the 
DBF, on the MSR, and shows competitive results in the size 
of the biclusters found. 

Caldas and Kaski [26] propose TreeBic, a hierarchical 
model. The method assumes that the samples or conditions 
in a microarray are grouped in a tree structure, where nodes 
correspond to subsets in the hierarchy. Each node is 
associated with a subset of genes, for which, samples are 
highly homogeneous. The tests were conducted on a 
collection of 199 miRNAs profiled from 218 human tissues 
from healthy and tumor cell lines. The results are compared 
with those obtained by Samba [18], Plaid [13], DC [1], and 
OPSM [16] methods. TreeBic performs better both, in terms 
of the proportion of biclusters enriched to at least one tissue 
or GO category, and in terms of the total number of tissues 
and GO categories enriched. Despite these results, the 
TreeBic method ranks second regarding the number of 
generated biclusters. 

In a recent work [37] a multi-objective genetic algorithm 
(MOGB), based on the well known NSGA-II [38], has been 
proposed. The algorithm, that outperforms some state-of-the-
art approaches, uses a standard binary encoding scheme. 
This encoding scheme generates long binary strings mainly 
composed of zeros. By observing this fact we propose a 
different encoding scheme whose length depends only on the 
number of genes and conditions actually considered in the 
bicluster, consequently producing shorter chromosomes. 

IV. PROPOSED ALGORITHM 

We propose a multi-objective genetic algorithm, where 
each individual in the population encodes a bicluster. The 
goal is to minimize the MSR and to maximize the bicluster 
size, both at the same time. Unlike the MOEA proposed in 
[33], the proposed algorithm does not require a local search 
to keep biclusters under the MSR threshold δ. Instead, the 
selection process prefers individual with their MSR under 
the threshold over individuals violating the threshold. This 
represents two important advantages, first it avoids the use of 
the parameter α required in local search, which influences 
the results. Second, it reduces the computation time, 
allowing the use of a larger number of individuals and 
generations. The algorithm details are presented in the 
following subsections. 

A. Representation of biclusters  

A bicluster is represented by two sequences of integers, 
one for the genes (G) and the other for the conditions (C). If 
the gene sequence has a value j it indicates that gene j is part 
of the bicluster, the same applies for the condition sequence. 
Note that under this representation the individuals are of 
variable size. Fig. 1A shows an example of the sequences 
representation. The bicluster corresponding to the sequences 
of Fig. 1A is shown in Fig. 1C, it was extracted from the 
expression matrix presented in Fig. 1B. 

B. The main steps 

Algorithm 1 starts by creating a population of n 
biclusters. Each bicluster is created by selecting at random 
two genes and two conditions of the matrix expression, so 
that the MSR do not exceed the threshold δ. If the threshold 
is exceeded the selected pair are discarded, and the process 
repeated until a bicluster with an MSR value below the 
threshold is obtained. Since the initial size of biclusters is 
small the chances to get one under the threshold is high. 

 

Algorithm 1: Enhanced MO Genetic Biclustering (eMOGB) 

Input: A gene expression matrix, MSR threshold δ, n, pc, pm, ng 

Output: A set of optimized biclusters 

1. generate a random initial population of n individuals with 

MSR below δ  

2. compute the nondominated fronts 

3. compute the crowding distance for each individual 

4. repeat 

5.       select the best biclusters 

6.       apply crossover with probability pc 

7.       apply mutation with probability pm 

8.       combine parent and children populations 

9.       compute the nondominated fronts of the combined  

      populations 

10.       compute the crowding distance for the individuals in 

      the combined population 

11.       sort the biclusters of the combined population 

12.       define the new population of n biclusters 

13. until the number of generations without improvement is ng 

14. return the biclusters corresponding to the nondominated 

individuals of the last generation 

 



 
Figure 1. Representation of a bicluster, G = genes, C = conditions. A) The 

integer array representing the bicluster. B) An array of gene expression data. 

C) Bicluster values comprising selected expression (shaded) values of the 

matrix in B). 
The nondominated front is calculated based on the 

concept of dominance. An individual i dominates individual 
j, if either of the following conditions hold: 

1. The MSR of i (MSRi) is less than or equal to MSRj, 

and the size of i (sizei) is larger than sizej. 

2. sizei is greater than or equal to sizej, and MSRi  is less 

than MSRj. 

An exception to these two conditions is the following rule. 

If individual i has only one gene or one condition and 

indivual j has more than one, then j dominates i. This 

especial case of domination helps the algorithm to avoid 

having a population of individuals mainly with one-gene or 

one-condition. 
  For an individual (bicluster) to belong to a 

nondominated front, it should not be dominated by any other 
in the population. Once the individuals are identified in the 
first front, they are discarded to initiate the identification of 
individuals in the second front. This process is repeated 
successively until there are no more dominated individuals. 

Line 3 computes the crowding distance of each 
individual as it is done by Mitra and Banka [33]. This 
distance is a measure of the degree of saturation of the search 
space (in terms of bicluster size and MSR). The closer the 
MSR and size of an individual is to the rest of the population, 
the lower its crowing distance becomes. This distance is used 
as a means to maintain diversity in the population. 

Once the nondominated fronts and the crowding distance 
are computed, the selection of the best individuals is 
performed. The selection is done by applying the binary 

tournament with crowding distance [38]. First, the 
population is randomly rearranged, and two adjacent 
individuals are selected to participate in the tournament. An 
individual i is chosen over an individual j if it meets any of 
the following conditions: 

1. MSRi  is below the threshold δ, and the MSRj is above 

the threshold.  

2. Both MSRs are on the same side of the threshold δ, 

and i is in a front with lower index than j. 

3. Both MSRs are on the same side of the threshold of δ, 

both belong to the same front, and the crowding 

distance of i is greater than the one corresponding to j. 
 
Crossover is applied (with probalility pc) to the selected 

individuals in line 6. For this process, individuals are taken 
in pairs (parents) and two new biclusters (offspring) are 
generated. Two random crossover points are selected from 
Parent 1, one from the gene sequence and the other from the 
condition sequence. The selected crossover points contain 
the alleles that work as pivots, P.G and P.C, for the genes 
sequence and for the conditions sequence, respectively. 
Child 1 takes from Parent 1 alleles that are less than or equal 
to the pivot while Child 2 receives alleles from Parent 1 
greater than the pivot. Child 1 is completed with alleles form 
Parent 2 greater than the pivot, while Child 2 receives from 
Parent 2 alleles less than or equal to the pivot. This way, it is 
guaranteed that no repeated alleles will appear in the 
offspring. Fig. 2 shows an example of this newly proposed 
crossover operator. 

Mutation is applied (line 7) with probability pm to the 
individuals in the children population. Mutation of a 
bicluster is done by selecting a random index from the set of 
genes or conditions (genes are selected 80% and conditions 
20%, every time the mutation is applied). If the index is 
already in the bicluster then it is erased, otherwise it is added 
to the bicluster. Therefore, this operator adds a new gene or 
condition, or removes a selected gene or condition.  

Fig. 3 shows an example of a mutation in a bicluster. In 
this example the gene number 10 is randomly selected, and 
added to the array, since it was not originally present in the 
bicluster. This introduces in the bicluster the values of 
expression of gene number 10 in the matrix expression for 
the selected conditions (shaded values).  

After the mutation is performed a process which 
combines both populations (parent and children) is carried 
out. This process consists in considering only as a single 
population all individuals from both populations. For this 
combined population, of size 2n, nondominated fronts and 
crowding distances are recalculated.  

Subsequently, biclusters are ordered for this combined 
population, according to the following criteria: 

1. First filter out the individuals with an MSR value 

above the threshold δ. 

2. Then fit those in the lower fronts. 



 
Figure 2. Example of a crossover between two individuals. The pivot for 

the gene sequence is P.G = 6, while for the condition sequence P.C = 3. 

 

Figure 3. Example of mutation. Gene number 10 is randomly selected 

from the set of genes and added to the genes sequence. 

3. If the population is overflow (population size > n) 

with individuals belonging to a given front then fit 

first those with a larger crowding distance. 

The resulting n individuals after these steps will be 
considered the next generation of biclusters. This process 
stops after a number of generations ng without changes in the 
size of the largest bicluster with MSR below δ is reached 
(line 13). 

V. EXPERIMENTAL SETUP AND RESULTS 

The enhanced multi-objective genetic algorithm was 
applied to two real data sets. The first benchmark tested was 
the expression of 2884 genes under 17 conditions from  
Yeast Saccharomyces Cerevisiae, containing 34 nulls. The 
second set corresponds to the expression of 4026 genes 
under 96 conditions of Human B cells Lymphoma, with 
19,667 null values corresponding to 5.08% of the full set. 
Both sets of data were taken from the site 
http://arep.med.harvard.edu/ [34]. The experiments were 
performed using an MSR threshold of δ = 300 for the Yeast, 
and a threshold δ = 1200 for the Lymphoma. Although there 
is no a profound justification from the point of view of 
biology, these values have been extensively used to evaluate 
and compare a variety of biclustering methods. In the case of 

the Yeast assembly, null values were replaced by random 
values (identified by -1) in the range 0 to 800. In the case of 
Lymphoma null values (identified by 999) were replaced by 
random values in a range of -800 to 800. Both threshold 
values selected for the MSR, as well as the strategy and range 
to replace the missing values were established as they were 
just described. This is done to perform a fair comparison 
with results reported in other studies. 

The algorithm was run 30 times for each data set, using a 
population size of 50 individuals, and setting a value of ng = 
400 for the number of generations without improvement in 
the bicluster size, as a termination criterion. The crossover 
and mutation probabilities were of pc = 1.0 and pm = 0.5, 
respectively. The method was coded and implemented in C#, 
experiments were performed under  Windows XP OS 
version Service Pack 2 , using Visual Studio Ultimate 2010 
in a PC of 2.41 GHz of speed and 2.5 GB of RAM. The 
algorithm receives as input a text file with the matrix of 
expression data to be processed. Returns as output another 
text file with the built biclusters, the values that were used to 
replace the null values in the array, and a descriptive 
information on the best biclusters built. 

The average MSR value, the number of genes, number of 
conditions, and the average and maximum size of the 
discovered biclusters were used as assessment criteria. Table 
I shows a comparison of the results obtained from the Yeast 
dataset. For this comparison the FLOC algorithms [10], DBF 
[35], MOEA [33], and the one presented by Cheng and 
Church [1] are considered. This is a representative group of 
algorithms for biclustering, which have been analyzed 
frequently in the literature. The results reported for these 
algorithms were taken from the work of Mitra and Banka 
[33]. MOGB [37] is a recently proposed evolutionary 
approach, the one improved in this work. Average results 
shown in Table I are taken in MOEA [33], MOGB [37], and 
eMOGB over all nondominated solutions. The 
nondominated solutions in MOGB [37] and in eMOGB are 
the consolidated solutions of 30 runs for each algorithm. 

Table I.  Comparative results of biclustering methods on data from the 

Yeast Saccharomyces Cerevisiae, using a threshold MSR δ = 300. 

Method Average 

MSR 

 

Average 

bicluster 

size 

Size of the 

largest bicluster 

/Ave. CI 

FLOC [10] 187.54 1825.78 2000/0.103 

DBF [35] 114.70 1627.20 4000/0.071 

Cheng-Church [1] 204.29 1576.98 4485/0.129 

MOEA [33] 234.87 10301.71 14828/0.023 

MOGB[37] 282.45 14112.60 16488/0.020 

eMOGB 290.68 15189.40 16944/0.019 

Table II.  Best biclusters found on the data set of the Yeast Saccaromice 

Cerevisae, using a threshold MSR δ = 300. 

Method MSR Bicluster size CI 

MOEA [33] 286.27 14828 0.019 

MOGB[37] 299.95 16728 0.018 

eMOGB 299.83 16944 0.018 



 
Figure 4. Comparison of nondominated fronts generated by MOGB and 

MOEA for the Yeast Saccaromice Cerevisae data set. These are the 

consolidated nondominated  fronts after 30 runs of each algorithm. 

The proposed algorithm, eMOGB, outperforms the other 
algorithms in the size of the biclusters discovered under the 
defined threshold (see third column in Table I). The eMOGB 
obtains larger biclusters (average and best cases), even larger 
than those of MOEA and MOGB, which already exceeds the 
performance of previous algorithms. The CI average values 
is also better for eMOGB (see column 4 in Table I). The CI 
(Consistency Index) introduced by Mitra and Banka, 
represents the relationship between the MSR of a bicluster 
and its size. This ratio indicates how well the two 
requirements of biclusters are met: i) the expression levels of 
genes are similar over a range of conditions, i.e., must have a 
low MSR, and ii) the size is as large as possible.  

Table III.  Best biclusters found on the data set of the Human B-Lymphoma 

cells, using a threshold MSR δ = 1200. 

Method MSR Bicluster size CI 

MOEA [33] 1199.98 37560 0.032 

MOGB[37] 1199.38 43834 0.027 

eMOGB 1199.82 45708 0.026 

 
A bicluster is considered better as its CI value is smaller. 

A very important advantage of MOGB and eMOGB with 
respect to MOEA is that they do not require a local search to 
keep the biclusters below the threshold, which avoids the 
handling of  parameter α (used in various methods [1], [33], 
[27]), whose proper choice largely influences the results. The 
yeast data best biclusters, according to the CI criterion, 
generated by each method are shown in Table II. We can see 
here that both methods MOGB and eMOGB outperform the 
MOEA [33].  

The algorithm results obtained with the Lymphoma data 
were compared with the results reported by Mitra and Banka 
[33], which were the best results in the literature (see Table 
III). This table shows that eMOGB outperforms the best 
MOEA and MOGB results, both in terms of the largest size 
of biclusters found, as in CI value.  

Table IV.  BCoverage measures for the Yeast and Lymphoma data sets. A = 

MOGB, B= MOEA y D = eMOGB 

Method C(A,B) C(B,A) C(A,D) C(D,A) 

Yeast 0.889 0 0.118 0.466 

Lymphoma 1 0 0.219 0.667 

Table V.  Binary epsilon indicator for the Yeast and Lymphoma data sets. 

A = MOGB, B = MOEA y D = eMOGB 

Method IƐ (A,B) IƐ (B,A) IƐ (A,D) IƐ (D,A) 

Yeast 1.184 0.844 0.927 1.079 

Lymphoma 1 1.094 1.037 0.965 

 

Although these results are informative what each algorithm 

is actually generating is a set of nondominated solutions, 

therefore we need some criteria to properly compare two 

sets of solutions. To this aim the set coverage (C), and the 

binary epsilon-indicator (IƐ) measures were used. For the 

coverage indicator [39], a value C(A,B) = 1 means that all 

decision vectors in B are weakly dominated by A.  

On the other hand, C(B,A) = 0 means that none of the 

solutions of A are dominated by solutions in B. If both 

conditions hold at the same time then solutions in A 

dominate all solutions in B. Although the coverage indicator 

is capable of detecting dominance between approximation 

sets, it does not provide any information regarding the 

closeness of fronts generated by the algorithms. To fill this 

gap the multiplicative binary-epsilon indicator IƐ(A,B) was 

also computed. This criterion gives the minimum factor Ɛ by 

which the objective functions of the approximation set B 

can be multiplied such that the solutions in A weakly 

dominate them. Since the epsilon indicator is not symmetric, 

it is necessary to compute IƐ(B,A) as well (see [39] for 

details). 
The results for these two measures are shown in tables IV 

and V. Table IV shows the coverage values, in the case of 
Yeast we can see that almost all nondominated solutions 
generated by MOEA are equal to or dominated by 
nondominated solutions generated by MOGB, C(A,B) = 
0.889, while no solution of MOGB is dominated by solutions 
of MOEA, C(A,B) = 0. This result can also be observed in 
Figure 4, where we can see that all but a couple of points in 
MOEA are dominated by solutions in MOGB. The situation 
is better for MOGB in the case of the Lymphoma data, here 
all solutions of MOEA are dominated by solutions of 
MOGB, C(A,B) = 1, C(B,A) = 0. This is supported by what 
is observed in Figure 5. When comparing MOGB with 
eMOGB we can see that results favors eMOGB, C(A,D) = 
0.118 and C(D,A) = 0.466 for the Yeast,  and C(A,D) = 
0.219 and C(D,A) = 0.667 for the Lymphoma.  Regarding 
the closeness of fronts, for both data sets, we can see that the 
largest distance is between the MOEA and both MOGB and 
eMOGB (see columns 1 and 2 in Table V). However, the 
fronts generated by MOGB and eMOGB are not far from 
each other as can be observed in columns 3 and 4 in Table V, 
and in figures 6 and 7.   

      



 
Figure 6. Comparison of nondominated fronts generated by MOGB and 

eMOGB for the Yeast Saccaromice Cerevisae data set. These are the 

consolidated nondominated  fronts after 30 runs of each algorithm. 

 
Figure 7. Comparison of nondominated fronts generated by MOGB and 

eMOGB for the Lymphoma data set. These are the consolidated 

nondominated  fronts after 30 runs of each  algorithm. 

 

 

 

 
Figure 5. Comparison of nondominated fronts generated by MOGB and 

MOEA for the Lymphoma data set. These are the consolidated 

nondominated  fronts after 30 runs of each algorithm..  

 VI. CONCLUSIONS 

A new encoding scheme for a multi-objective genetic 
algorithm applied to the biclustering of gene expression data 
has been proposed. The encoding follows a group based 
representation and incorporates appropriate crossover and 
mutation operators.  The performance of the proposed 
algorithm is tested on two real gene expression data, which 
have been widely used as benchmarks for this problem. 
Experiments were focused on the discovery of large 
biclusters with MSR below predefined thresholds for both 
sets of data. The results have shown that the proposed 
algorithm performs better than others currently reported in 
the literature in terms of the average bicluster size and the 
largest bicluster size when the MSR value is kept under a 
predefined threshold. When both criteria, bicluster size and 
MSR are optimized at the same time our algorithm shows 
also the best performance considering the MOEA and 
MOGB results.  

An important feature of our algorithm is that it does not 
require a local search, contrary to some current algorithms 
which require maintaining the MSR below the threshold by 
means of this technique.  

Future work will assess the biological significance of the 
generated biclusters, based on ontological annotations on 
these and new data sets.  
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