
Improving an Evolutionary Multi-objective Algorithm for the Biclustering of Gene

Expression Data

Carlos A. Brizuela
1
, Jorge E. Luna-Taylor

2
, Israel Martinez-Perez

1
, Hugo A. Guillen

1
, David O. Rodriguez

1
,

Armando Beltran-Verdugo
1

1: Computer Sciences Department - CICESE

Ensenada, B.C., Mexico

e-mail:cbrizuel@cicese.mx

2: Department of Systems and Computation - ITLP

La Paz, B.C.S., Mexico

e-mail: eluna@itlp.edu.mx

Abstract—The development of new technologies for the design of

DNA microarrays has boosted the generation of large volumes of

biological data, which requires the development of efficient

computational methods for their analysis and annotation. On these

sets of data, the bicluster construction algorithms attempt to

identify coherent associations of genes and experimental

conditions. In this paper, we introduce an improved version of a

multi-objective genetic algorithm to find large biclusters that are,

at the same time, highly homogeneous. The proposed improvement

uses a group based representation for the genes-conditions

associations rather than long binary strings. To assess the

proposal performance the algorithm is applied to generate

biclusters for two real gene expression data: Saccharomyces

Cerevisiae with 2884 genes and 17 conditions, and the human B

cells Lymphoma with 4096 genes and 96 conditions. The results of

computational experiments show that the proposed approach

outperforms current state-of-the-art algorithms on these data sets.

Keywords- biclustering; gene expression; multi-objective

genetic algorithm; group based representation; microarray DNA.

I. INTRODUCTION

The increased use of microarray technology has
generated a large volume of biological data, which
necessitates the development of efficient computational
methods for their functional interpretation. To address this
challenge many techniques have been proposed. Among
them, clustering has become one of the most used
approaches as a first step in the work of discovering new
knowledge. However, the results of clustering methods
applied to genes have been limited. This limitation makes it
difficult to analyze the expression of genes for a given set of
experimental conditions, mainly because the expression
patterns do not associate the genes over all conditions, rather
on a subset of them. To overcome this situation various
algorithms have been proposed to cluster genes and
conditions simultaneously. These algorithms are called
bicluster algorithms and have the aim to identify groups of
genes that exhibit a high correlation across a set of given
conditions.

The search for biclusters in gene expression data is a very
attractive computational challenge. There are a vast amount
of methods proposed to deal with this problem. The work of
Cheng and Church [1] is of much relevance since it
introduces the concept of bicluster applied to the analysis of

gene expression for the first time, and proposed an original
algorithm for its construction. Despite some limitations, as
discussed by Rodriguez et al. [2] and by Aguilar [3], this
algorithm been used as a benchmark for evaluating and
comparing the performance of a wide variety of more recent
and elaborated algorithms.

Madeira and Oliveira [4] presented a classification of
biclustering methods mainly based on two aspects: i) the
type of biclusters that the algorithms are able to find, and ii)
the computational technique used. There are algorithms that
seek biclusters with constant values, e.g. the mClustering [5],
based on a divide and conquer approach, and the DCC [6]
that uses a combination of clustering of rows and columns.
Other methods identify biclusters with columns or rows with
constant values, such as the CTWC [7], the δ-Patterns [8],
which is a greedy approach, and Gibbs [9]. Some methods
such as δ-biclusters [1] and FLOC [10, 11], use greedy
approaches, the pClusters [12] uses exhaustive search, Plaid
Models [13] and PRM [14, 15] are based on the
identification of probability distribution parameters. There
are also methods that seek biclusters with patterns of
coherent evolution such as OPSMs [16] and xMotifs [17],
both using a greedy search, and SAMBA [18] and OP-
Clusters [19], which perform exhaustive search.

Rodriguez et al. [2] add to this classification methods that
use stochastic search. In this branch, algorithms such as the
SEBI [20] and Simulated Annealing [21] are included.

Despite the existence of a large number of biclustering
algorithms, there are still many significant challenges to
overcome [2]:

 The scarce information available to define the type of
specific biclusters to search.

 The amount of noise in the data matrices.

 The large computation time due to the complex
calculations often required.

 Missing data in the input matrices.

 The existence of user parameters that strongly
influence the final results.

 The scarce number of assessment methods for the
generated results.

 The multi-objective nature of the problem, since the
MSR and the bicluster size, must be optimized at the
same time.

In this paper, we introduce an improved version of a
recently proposed evolutionary algorithm for the biclustering
problem. The improvement uses a more appropriate
representation and its corresponding genetic operators. The
biclusters are represented by two sequences, one represents
the genes and the other the conditions which are present in
the bicluster. The algorithm seeks to simultaneously
minimize a homogeneity measure of the bicluster known as
MSR, and to maximize the bicluster size. To show the
effectiveness of the proposed approach a set of experiments
are performed on two reference sets data (Yeast
Saccharomyces cerevisiae and Human Lymphoma B-cells).
The next section formally defines the problem to solve.

II. BICLUSTERING ANALYSIS OF GENE EXPRESSION

Cheng and Church [1] introduced the concept of bicluster
within the context of gene expression data analysis. A
bicluster is a subset of genes along with a subset of
conditions with a high level of similarity. The similarity is
considered as a consistency measure between genes and
conditions in the bicluster.

Within this context, we can define biclustering as the
process of grouping genes and conditions simultaneously,
searching for biclusters of maximum size and maximum
similarity within a data matrix of gene expression.

Madeira and Oliveira [4] present a formal definition of
the bicluster problem. The input data is defined by a matrix A
of n by m, where each element aij is a real value. In the case
of gene expression arrays, aij represents the level of
expression of gene i under condition j.

The matrix A with n rows and m columns is defined by
its set of rows, X = {x1,…,xn} and its set of columns, Y =
{y1,…,ym}. (X, Y) is used to denote the matrix A. If I ⊆ X and
J ⊆ Y are subsets of rows and columns of A, respectively,
then AIJ = (I, J), which denotes the submatrix AIJ of A
containing only the elements aij that belong to the submatrix
with the set of rows I and the column set J.

Given the matrix A, a cluster of rows is a subset of rows
that have a similar behavior through the set of all columns.
This means that a cluster of rows AIY = (I, Y) is a subset of
rows defined by the set of all columns Y, where I = {i1,…,ik}
is a subset of rows I ⊆ X and k ≤ n. A cluster of rows (I, Y),
can thus be defined as a submatrix k by m of the data matrix
A. Similarly, a cluster of columns is a subset of columns
which have a similar behavior across the set of all rows. A
cluster AXJ = (X, J) is a subset of columns defined on the set
of all rows of X, where J = {j1,…,js} is a subset of columns (J
⊆ Y and s ≤ m). A cluster of columns AXJ = (X, J) can be
defined as a submatrix of n by s of the data matrix A.

A bicluster is a subset of rows that have a similar
behavior through a subset of columns, and vice versa. The
bicluster AIJ = (I, J) is a subset of rows of X and a subset of
columns of Y, where I = {i1,…,ik} is a subset of rows (I ⊆ X
and k ≤ n), and J = {j1,…,js} is a subset of columns (J ⊆ Y

and s ≤ m). A bicluster (I, J) can be defined as a submatrix of
k by s of the data matrix A.

The specific problem addressed by the biclustering
algorithms is defined as: given a data matrix A it is required
to identify a set of biclusters Bk = (Ik, Jk) such that each
bicluster Bk satisfies some property of homogeneity. The
exact features of homogeneity of biclusters vary according to
the statement of the problem.

In this work we concentrate on optimizing two properties
of the bicluster:

i) The homogeneity G(I, J) of bicluster (I, J) is

expressed as a mean squared residue (MSR)
score defined as:

 ()

| | | |
∑ ()

where,

| |
∑ ,

| |
∑ , and

| | | |
∑

ii) The bicluster size |B| = | | | |
The MSR has to be minimized while the bicluster size
maximized.
Although the complexity of the biclustering problem

depends on the exact formulation of the problem, and
specifically the function used to evaluate the quality of a
bicluster, the variant analyzed here is NP-hard.

III. RELATED WORK

Recently there have been several algorithms based on a
variety of techniques to find biclusters, for example, BBC
[22], Reactive GRASP [23], RAP [24], GS Binary PSO [25]
and TreeBic [26], among others.

In general, it is difficult to evaluate and compare
biclustering methods, since the obtained results strongly
depend on the scenario under consideration. Prelic et al. [27]
present an evaluation and comparison of five outstanding
methods. The evaluated methods are: CC [1], Samba [18],
OPSM [16], ISA [28, 29] and xMotif [17]. To evaluate the
methods both artificial and real data sets are used. The
artificial data include biclusters with constant and additive
values. Also, a systematic increase in noise with an
increasing overlap between the created biclusters is
considered. As for the real data, biological information takes
into account GO annotations [30, 31], maps of metabolic
pathways [31], and information on protein-protein
interaction [32, 31]. In general, the methods ISA, Samba and
OPSM perform well. While some methods perform better
under certain scenarios, they show lower performance in
others.

Mitra and Banka [33] introduce a multiobjective
evolutionary algorithm (MOEA) with the addition of local
search. The objective is to find large size biclusters, with
MSR values below a predefined threshold. Their method was
evaluated using two sets of gene expression data referenced
in the literature: Saccharomyces Cerevisiae and Human B

Cell Lymphoma. The yeast data they use is a collection of
2884 genes under 17 conditions, with 34 null entries
identified with value -1, indicating a missing value. The
expression data of Human B cells [34] contains 4026 genes
under 96 conditions, with 5.08% of missing values. The
results of this method are compared with FLOC [11], DBF
[35] and CC [1], using as comparison criteria the MSR, and
the size of the biclusters obtained by each method. In
addition, they determined the biological significance of the
biclusters in connection with information on the yeast cell
cycle. The biological relevance is evaluated based on the
statistical significance determined by the GO annotation
database [36]. As for the comparison based on the MSR and
the size of the biclusters obtained, the MOEA results
outperform the ones generated by other methods.

Dharan and Nair [23] proposed the Reactive GRASP
method. Statistical significance of the generated biclusters is
assessed to see how well they correspond with the known
gene annotation [33]. For this purpose the package SGD GO
gene ontology term finder [36] is used. The performed tests
show that the Reactive GRASP is able to find biclusters with
higher statistical significance than the basic GRASP [23] and
the CC [1] methods.

Das and Idicula [25] propose a greedy search algorithm
combined with PSO (GSPSO). The tests are conducted on
expression data of the cell cycle of the Yeast Saccharomyces
Cerevisiae. The data used is based on [34], and consists of
2884 genes under 17 conditions. The results are compared
with those of SEBI [20], CC [1], FLOC [11], DBF [35], and
Modified Greedy [25]. The comparison criteria are the MSR
(named as MSE) presented by [1], and the bicluster size. The
GS Binary PSO outperforms the other methods, except the
DBF, on the MSR, and shows competitive results in the size
of the biclusters found.

Caldas and Kaski [26] propose TreeBic, a hierarchical
model. The method assumes that the samples or conditions
in a microarray are grouped in a tree structure, where nodes
correspond to subsets in the hierarchy. Each node is
associated with a subset of genes, for which, samples are
highly homogeneous. The tests were conducted on a
collection of 199 miRNAs profiled from 218 human tissues
from healthy and tumor cell lines. The results are compared
with those obtained by Samba [18], Plaid [13], DC [1], and
OPSM [16] methods. TreeBic performs better both, in terms
of the proportion of biclusters enriched to at least one tissue
or GO category, and in terms of the total number of tissues
and GO categories enriched. Despite these results, the
TreeBic method ranks second regarding the number of
generated biclusters.

In a recent work [37] a multi-objective genetic algorithm
(MOGB), based on the well known NSGA-II [38], has been
proposed. The algorithm, that outperforms some state-of-the-
art approaches, uses a standard binary encoding scheme.
This encoding scheme generates long binary strings mainly
composed of zeros. By observing this fact we propose a
different encoding scheme whose length depends only on the
number of genes and conditions actually considered in the
bicluster, consequently producing shorter chromosomes.

IV. PROPOSED ALGORITHM

We propose a multi-objective genetic algorithm, where
each individual in the population encodes a bicluster. The
goal is to minimize the MSR and to maximize the bicluster
size, both at the same time. Unlike the MOEA proposed in
[33], the proposed algorithm does not require a local search
to keep biclusters under the MSR threshold δ. Instead, the
selection process prefers individual with their MSR under
the threshold over individuals violating the threshold. This
represents two important advantages, first it avoids the use of
the parameter α required in local search, which influences
the results. Second, it reduces the computation time,
allowing the use of a larger number of individuals and
generations. The algorithm details are presented in the
following subsections.

A. Representation of biclusters

A bicluster is represented by two sequences of integers,
one for the genes (G) and the other for the conditions (C). If
the gene sequence has a value j it indicates that gene j is part
of the bicluster, the same applies for the condition sequence.
Note that under this representation the individuals are of
variable size. Fig. 1A shows an example of the sequences
representation. The bicluster corresponding to the sequences
of Fig. 1A is shown in Fig. 1C, it was extracted from the
expression matrix presented in Fig. 1B.

B. The main steps

Algorithm 1 starts by creating a population of n
biclusters. Each bicluster is created by selecting at random
two genes and two conditions of the matrix expression, so
that the MSR do not exceed the threshold δ. If the threshold
is exceeded the selected pair are discarded, and the process
repeated until a bicluster with an MSR value below the
threshold is obtained. Since the initial size of biclusters is
small the chances to get one under the threshold is high.

Algorithm 1: Enhanced MO Genetic Biclustering (eMOGB)

Input: A gene expression matrix, MSR threshold δ, n, pc, pm, ng

Output: A set of optimized biclusters

1. generate a random initial population of n individuals with

MSR below δ

2. compute the nondominated fronts

3. compute the crowding distance for each individual

4. repeat

5. select the best biclusters

6. apply crossover with probability pc

7. apply mutation with probability pm

8. combine parent and children populations

9. compute the nondominated fronts of the combined

 populations

10. compute the crowding distance for the individuals in

 the combined population

11. sort the biclusters of the combined population

12. define the new population of n biclusters

13. until the number of generations without improvement is ng

14. return the biclusters corresponding to the nondominated

individuals of the last generation

Figure 1. Representation of a bicluster, G = genes, C = conditions. A) The

integer array representing the bicluster. B) An array of gene expression data.

C) Bicluster values comprising selected expression (shaded) values of the

matrix in B).
The nondominated front is calculated based on the

concept of dominance. An individual i dominates individual
j, if either of the following conditions hold:

1. The MSR of i (MSRi) is less than or equal to MSRj,

and the size of i (sizei) is larger than sizej.

2. sizei is greater than or equal to sizej, and MSRi is less

than MSRj.

An exception to these two conditions is the following rule.

If individual i has only one gene or one condition and

indivual j has more than one, then j dominates i. This

especial case of domination helps the algorithm to avoid

having a population of individuals mainly with one-gene or

one-condition.
 For an individual (bicluster) to belong to a

nondominated front, it should not be dominated by any other
in the population. Once the individuals are identified in the
first front, they are discarded to initiate the identification of
individuals in the second front. This process is repeated
successively until there are no more dominated individuals.

Line 3 computes the crowding distance of each
individual as it is done by Mitra and Banka [33]. This
distance is a measure of the degree of saturation of the search
space (in terms of bicluster size and MSR). The closer the
MSR and size of an individual is to the rest of the population,
the lower its crowing distance becomes. This distance is used
as a means to maintain diversity in the population.

Once the nondominated fronts and the crowding distance
are computed, the selection of the best individuals is
performed. The selection is done by applying the binary

tournament with crowding distance [38]. First, the
population is randomly rearranged, and two adjacent
individuals are selected to participate in the tournament. An
individual i is chosen over an individual j if it meets any of
the following conditions:

1. MSRi is below the threshold δ, and the MSRj is above

the threshold.

2. Both MSRs are on the same side of the threshold δ,

and i is in a front with lower index than j.

3. Both MSRs are on the same side of the threshold of δ,

both belong to the same front, and the crowding

distance of i is greater than the one corresponding to j.

Crossover is applied (with probalility pc) to the selected

individuals in line 6. For this process, individuals are taken
in pairs (parents) and two new biclusters (offspring) are
generated. Two random crossover points are selected from
Parent 1, one from the gene sequence and the other from the
condition sequence. The selected crossover points contain
the alleles that work as pivots, P.G and P.C, for the genes
sequence and for the conditions sequence, respectively.
Child 1 takes from Parent 1 alleles that are less than or equal
to the pivot while Child 2 receives alleles from Parent 1
greater than the pivot. Child 1 is completed with alleles form
Parent 2 greater than the pivot, while Child 2 receives from
Parent 2 alleles less than or equal to the pivot. This way, it is
guaranteed that no repeated alleles will appear in the
offspring. Fig. 2 shows an example of this newly proposed
crossover operator.

Mutation is applied (line 7) with probability pm to the
individuals in the children population. Mutation of a
bicluster is done by selecting a random index from the set of
genes or conditions (genes are selected 80% and conditions
20%, every time the mutation is applied). If the index is
already in the bicluster then it is erased, otherwise it is added
to the bicluster. Therefore, this operator adds a new gene or
condition, or removes a selected gene or condition.

Fig. 3 shows an example of a mutation in a bicluster. In
this example the gene number 10 is randomly selected, and
added to the array, since it was not originally present in the
bicluster. This introduces in the bicluster the values of
expression of gene number 10 in the matrix expression for
the selected conditions (shaded values).

After the mutation is performed a process which
combines both populations (parent and children) is carried
out. This process consists in considering only as a single
population all individuals from both populations. For this
combined population, of size 2n, nondominated fronts and
crowding distances are recalculated.

Subsequently, biclusters are ordered for this combined
population, according to the following criteria:

1. First filter out the individuals with an MSR value

above the threshold δ.

2. Then fit those in the lower fronts.

Figure 2. Example of a crossover between two individuals. The pivot for

the gene sequence is P.G = 6, while for the condition sequence P.C = 3.

Figure 3. Example of mutation. Gene number 10 is randomly selected

from the set of genes and added to the genes sequence.

3. If the population is overflow (population size > n)

with individuals belonging to a given front then fit

first those with a larger crowding distance.

The resulting n individuals after these steps will be
considered the next generation of biclusters. This process
stops after a number of generations ng without changes in the
size of the largest bicluster with MSR below δ is reached
(line 13).

V. EXPERIMENTAL SETUP AND RESULTS

The enhanced multi-objective genetic algorithm was
applied to two real data sets. The first benchmark tested was
the expression of 2884 genes under 17 conditions from
Yeast Saccharomyces Cerevisiae, containing 34 nulls. The
second set corresponds to the expression of 4026 genes
under 96 conditions of Human B cells Lymphoma, with
19,667 null values corresponding to 5.08% of the full set.
Both sets of data were taken from the site
http://arep.med.harvard.edu/ [34]. The experiments were
performed using an MSR threshold of δ = 300 for the Yeast,
and a threshold δ = 1200 for the Lymphoma. Although there
is no a profound justification from the point of view of
biology, these values have been extensively used to evaluate
and compare a variety of biclustering methods. In the case of

the Yeast assembly, null values were replaced by random
values (identified by -1) in the range 0 to 800. In the case of
Lymphoma null values (identified by 999) were replaced by
random values in a range of -800 to 800. Both threshold
values selected for the MSR, as well as the strategy and range
to replace the missing values were established as they were
just described. This is done to perform a fair comparison
with results reported in other studies.

The algorithm was run 30 times for each data set, using a
population size of 50 individuals, and setting a value of ng =
400 for the number of generations without improvement in
the bicluster size, as a termination criterion. The crossover
and mutation probabilities were of pc = 1.0 and pm = 0.5,
respectively. The method was coded and implemented in C#,
experiments were performed under Windows XP OS
version Service Pack 2 , using Visual Studio Ultimate 2010
in a PC of 2.41 GHz of speed and 2.5 GB of RAM. The
algorithm receives as input a text file with the matrix of
expression data to be processed. Returns as output another
text file with the built biclusters, the values that were used to
replace the null values in the array, and a descriptive
information on the best biclusters built.

The average MSR value, the number of genes, number of
conditions, and the average and maximum size of the
discovered biclusters were used as assessment criteria. Table
I shows a comparison of the results obtained from the Yeast
dataset. For this comparison the FLOC algorithms [10], DBF
[35], MOEA [33], and the one presented by Cheng and
Church [1] are considered. This is a representative group of
algorithms for biclustering, which have been analyzed
frequently in the literature. The results reported for these
algorithms were taken from the work of Mitra and Banka
[33]. MOGB [37] is a recently proposed evolutionary
approach, the one improved in this work. Average results
shown in Table I are taken in MOEA [33], MOGB [37], and
eMOGB over all nondominated solutions. The
nondominated solutions in MOGB [37] and in eMOGB are
the consolidated solutions of 30 runs for each algorithm.

Table I. Comparative results of biclustering methods on data from the

Yeast Saccharomyces Cerevisiae, using a threshold MSR δ = 300.

Method Average

MSR

Average

bicluster

size

Size of the

largest bicluster

/Ave. CI

FLOC [10] 187.54 1825.78 2000/0.103

DBF [35] 114.70 1627.20 4000/0.071

Cheng-Church [1] 204.29 1576.98 4485/0.129

MOEA [33] 234.87 10301.71 14828/0.023

MOGB[37] 282.45 14112.60 16488/0.020

eMOGB 290.68 15189.40 16944/0.019

Table II. Best biclusters found on the data set of the Yeast Saccaromice

Cerevisae, using a threshold MSR δ = 300.

Method MSR Bicluster size CI

MOEA [33] 286.27 14828 0.019

MOGB[37] 299.95 16728 0.018

eMOGB 299.83 16944 0.018

Figure 4. Comparison of nondominated fronts generated by MOGB and

MOEA for the Yeast Saccaromice Cerevisae data set. These are the

consolidated nondominated fronts after 30 runs of each algorithm.

The proposed algorithm, eMOGB, outperforms the other
algorithms in the size of the biclusters discovered under the
defined threshold (see third column in Table I). The eMOGB
obtains larger biclusters (average and best cases), even larger
than those of MOEA and MOGB, which already exceeds the
performance of previous algorithms. The CI average values
is also better for eMOGB (see column 4 in Table I). The CI
(Consistency Index) introduced by Mitra and Banka,
represents the relationship between the MSR of a bicluster
and its size. This ratio indicates how well the two
requirements of biclusters are met: i) the expression levels of
genes are similar over a range of conditions, i.e., must have a
low MSR, and ii) the size is as large as possible.

Table III. Best biclusters found on the data set of the Human B-Lymphoma

cells, using a threshold MSR δ = 1200.

Method MSR Bicluster size CI

MOEA [33] 1199.98 37560 0.032

MOGB[37] 1199.38 43834 0.027

eMOGB 1199.82 45708 0.026

A bicluster is considered better as its CI value is smaller.

A very important advantage of MOGB and eMOGB with
respect to MOEA is that they do not require a local search to
keep the biclusters below the threshold, which avoids the
handling of parameter α (used in various methods [1], [33],
[27]), whose proper choice largely influences the results. The
yeast data best biclusters, according to the CI criterion,
generated by each method are shown in Table II. We can see
here that both methods MOGB and eMOGB outperform the
MOEA [33].

The algorithm results obtained with the Lymphoma data
were compared with the results reported by Mitra and Banka
[33], which were the best results in the literature (see Table
III). This table shows that eMOGB outperforms the best
MOEA and MOGB results, both in terms of the largest size
of biclusters found, as in CI value.

Table IV. BCoverage measures for the Yeast and Lymphoma data sets. A =

MOGB, B= MOEA y D = eMOGB

Method C(A,B) C(B,A) C(A,D) C(D,A)

Yeast 0.889 0 0.118 0.466

Lymphoma 1 0 0.219 0.667

Table V. Binary epsilon indicator for the Yeast and Lymphoma data sets.

A = MOGB, B = MOEA y D = eMOGB

Method IƐ (A,B) IƐ (B,A) IƐ (A,D) IƐ (D,A)

Yeast 1.184 0.844 0.927 1.079

Lymphoma 1 1.094 1.037 0.965

Although these results are informative what each algorithm

is actually generating is a set of nondominated solutions,

therefore we need some criteria to properly compare two

sets of solutions. To this aim the set coverage (C), and the

binary epsilon-indicator (IƐ) measures were used. For the

coverage indicator [39], a value C(A,B) = 1 means that all

decision vectors in B are weakly dominated by A.

On the other hand, C(B,A) = 0 means that none of the

solutions of A are dominated by solutions in B. If both

conditions hold at the same time then solutions in A

dominate all solutions in B. Although the coverage indicator

is capable of detecting dominance between approximation

sets, it does not provide any information regarding the

closeness of fronts generated by the algorithms. To fill this

gap the multiplicative binary-epsilon indicator IƐ(A,B) was

also computed. This criterion gives the minimum factor Ɛ by

which the objective functions of the approximation set B

can be multiplied such that the solutions in A weakly

dominate them. Since the epsilon indicator is not symmetric,

it is necessary to compute IƐ(B,A) as well (see [39] for

details).
The results for these two measures are shown in tables IV

and V. Table IV shows the coverage values, in the case of
Yeast we can see that almost all nondominated solutions
generated by MOEA are equal to or dominated by
nondominated solutions generated by MOGB, C(A,B) =
0.889, while no solution of MOGB is dominated by solutions
of MOEA, C(A,B) = 0. This result can also be observed in
Figure 4, where we can see that all but a couple of points in
MOEA are dominated by solutions in MOGB. The situation
is better for MOGB in the case of the Lymphoma data, here
all solutions of MOEA are dominated by solutions of
MOGB, C(A,B) = 1, C(B,A) = 0. This is supported by what
is observed in Figure 5. When comparing MOGB with
eMOGB we can see that results favors eMOGB, C(A,D) =
0.118 and C(D,A) = 0.466 for the Yeast, and C(A,D) =
0.219 and C(D,A) = 0.667 for the Lymphoma. Regarding
the closeness of fronts, for both data sets, we can see that the
largest distance is between the MOEA and both MOGB and
eMOGB (see columns 1 and 2 in Table V). However, the
fronts generated by MOGB and eMOGB are not far from
each other as can be observed in columns 3 and 4 in Table V,
and in figures 6 and 7.

Figure 6. Comparison of nondominated fronts generated by MOGB and

eMOGB for the Yeast Saccaromice Cerevisae data set. These are the

consolidated nondominated fronts after 30 runs of each algorithm.

Figure 7. Comparison of nondominated fronts generated by MOGB and

eMOGB for the Lymphoma data set. These are the consolidated

nondominated fronts after 30 runs of each algorithm.

Figure 5. Comparison of nondominated fronts generated by MOGB and

MOEA for the Lymphoma data set. These are the consolidated

nondominated fronts after 30 runs of each algorithm..

 VI. CONCLUSIONS

A new encoding scheme for a multi-objective genetic
algorithm applied to the biclustering of gene expression data
has been proposed. The encoding follows a group based
representation and incorporates appropriate crossover and
mutation operators. The performance of the proposed
algorithm is tested on two real gene expression data, which
have been widely used as benchmarks for this problem.
Experiments were focused on the discovery of large
biclusters with MSR below predefined thresholds for both
sets of data. The results have shown that the proposed
algorithm performs better than others currently reported in
the literature in terms of the average bicluster size and the
largest bicluster size when the MSR value is kept under a
predefined threshold. When both criteria, bicluster size and
MSR are optimized at the same time our algorithm shows
also the best performance considering the MOEA and
MOGB results.

An important feature of our algorithm is that it does not
require a local search, contrary to some current algorithms
which require maintaining the MSR below the threshold by
means of this technique.

Future work will assess the biological significance of the
generated biclusters, based on ontological annotations on
these and new data sets.

ACKNOWLEDGMENT

This work was partially supported by the National Council

of Science and Technology under grant SEP-CONACYT-

CB-2010-154737. The authors would like to thanks Najash

Marron for his collaboration in the algorithm

implementation.

REFERENCES

[1] Y. Cheng and G. M. Church, “Biclustering of expression data,”
Proceedings of the 8th International Conference on Intelligent
Systems for Molecular Biology (ISMB’00), 2000, pp. 93–103.

[2] D. S. Rodriguez, J. C. Riquelme, and J. S. Aguilar, “Analisis de datos
de expresion genética mediante tecnicas de biclustering,” tech. rep.,
Universidad de Sevilla, 2000.

[3] J. Aguilar, “Shifting and scaling patterns from gene expression data,”
Bioinformatics, vol. 21, 2005, pp. 3840–3845.

[4] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for
biological data analysis: a survey,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 1, no. 1, 2004, pp.
24–45.

[5] J. A. Hartigan, “Direct clustering of a data matrix,” Journal of the
American Statistical Association (JASA), vol. 67, no. 337, 1972, pp.
123–129.

[6] S. Busygin, G. Jacobsen, and E. Kramer, “Double conjugated
clustering applied o leukemia microarray data,” in Proceedings of the
2nd SIAM International Conference on Data Mining, Workshop on
Clustering High Dimensional Data, 2002.

[7] G. Getz, E. Levine, and E. Domany, “Coupled two-way clustering
analysis of gene microarray data,” Proceedings of the Natural
Academy of Sciences USA, 2000, pp. 12079–12084.

[8] A. Califano, G. Stolovitzky, and Y. Tu, “Analysis of gene expression
microarays for phenotype classification,” in Proceedings of the
International Conference on Computacional Molecular Biology,
2000, pp. 75–85.

[9] Q. Sheng, Y. Moreau, and B. D. Moor, “Biclustering microarray data
by gibbs sampling,” Bioinformatics, vol. 19, no. 2, 2003, pp. ii196–
ii205.

[10] J. Yang, W. Wang, H. Wang, and P. Yu, “δ-clusters: Capturing
subspace correlation in a large data set” Proceedings of the 18th IEEE
International Conference on Data Engineering, 2002, pp. 517–528.

[11] J. Yang, W. Wang, H. Wang, and P. Yu, “Enhanced biclustering on
expression data,” Proceedings of the 3rd IEEE Conference on
Bioinformatics and Bioengineering, 2003, pp. 321–327.

[12] H. Wang, W. Wang, J. Yang, and P. S. Yu, “Clustering by pattern
similarity in large data sets,” Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, 2002,
pp. 394–405.

[13] L. Lazzeroni and A. Owen, “Plaid models for gene expression data,”
Statistica Sinica, vol. 12, 2002, pp. 61–86.

[14] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller, “Rich
probabilistic models for gene expression,” Bioinformatics, vol. 17,
no. Suppl. 1, 2001, pp. S243–S252.

[15] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller,
“Decomposing gene expression into cellular processes,” Proceedings
of the Pacific Symposium on Biocomputing, vol. 8, 2003, pp. 89–100.

[16] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, “Discovering local
structure in gene expression data: The order-preserving submatrix
problem,” in Proceedings of the 6th International Conference on
Computacional Biology (RECOMB’02), 2002, pp. 49–57.

[17] T. M. Murali and S. Kasif, “Extracting conserved gene expression
motifs from gene expression data,” Proceedings of the Pacific
Symposium on Biocomputing, vol. 8, 2003, pp. 77–88.

[18] A. Tanay, oded Sharan, and R. Shamir, “Discovering statistically
significant biclusters in gene expression data,” Bioinformatics, vol.
18, no. Suppl. 1, 2002, pp. S136–S144.

[19] J. Liu and W. Wang, “Op-cluster: Clustering by tendency in high
dimensional space,” Proceedings of the 3rd IEEE International
Conference on Data Mining, 2003, pp. 187–194.

[20] F. Divina and J. S. Aguilar, “Biclustering of expression data with
evolutionary computation,” IEEE Transactions on Knowledge and
Data Engineering, vol. 18, 2006, pp. 590–602.

[21] K. Bryan, P. Cunningham, and N. Bolshakova, “Biclustering of
expression data using simulated annealing,” 18th IEEE Symposium on
Computer Based Medical Systems (CBMS’05), 2005, pp. 383-388.

[22] J. Gu and J. S. Liu, “Bayesian biclustering of gene expression data,”
BMC Genomics, vol. 9, no. Suppl. 1, 2008, p. S4.

[23] S. Dharan and A. S. Nair, “Biclustering of gene expression data using
reactive greedy randomized adaptive search procedure,” BMC
Bioinformatics, vol. 10, no. Suppl. 1, 2009, p. S27.

[24] G. Pandey, G. Atluri, M. Steinbach, C. L. Myers, and V. Kumar, “An
association analysis approach to biclustering,” ACM SIGKDD, ACM
New York, NY, USA, 2009, pp. 677-686

[25] S. Das and S. M. Idicula, “Greedy search-binary pso hybrid for
biclustering gene expression data,” International Journal of Computer
Applications, vol. 2, no. 3, 2010, pp. 0975–8887.

[26] J. Caldas and S. Kaski, “Hierarchical generative biclustering for
microrna expression analysis,” RECOMB, 2010, pp. 65–79.

[27] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann, W.
Gruissem, L. Hennig, L. Thiele, and E. Zitzler, “A systematic
comparison and evaluation of biclustering methods for gene
expression data,” Bioinformatics, vol. 22, 2006, pp. 1122–1129,
2006.

[28] J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N.
Barkai, “Revealing modular organization in the yeast transcriptional
network,” Nature Genetics, vol. 31, 2002, pp. 370–377.

[29] J. Ihmels, S. Bergmann, and N. Barkai, “Defining transcription
modules using large-scale gene expression data,” Bioinformatics, vol.
20, 2004, pp. 1993–2003.

[30] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A.

Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C.
Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G.
Sherlock, “Gene ontology: tool for the unification of biology,” Nature
Genetics, vol. 25, no. 1, 2000, pp. 25–29.

[31] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B.
Eisen, G. Storz, D. Botstein, and P. O. Brown, “Genomic expression
programs in the response of yeast cells to environmental changes,”
Molecular Biology of the Cell, vol. 11, 2000, pp. 4241–4257.

[32] A. Wille, P. Zimmermann, E. Vranova, A. Furholz, O. Laule, S.
Bleuler, L. Hennig, A. Prelic, P. von Rohr, L. Thiele, E. Zitzler, W.
Gruissem, and P. Buhlmann, “Sparse graphical gaussian modeling of
the isoprenoid gene network in Arabidopsis thaliana,” Genome
Biology, vol. 5, 2004, p. R92.

[33] S. Mitra and H. Banka, “Multi-objective evolutionary biclustering of
gene expression data,” Journal of the Pattern Recognition Society,
vol. 39, 2006, pp. 2464–2477.

[34] Harvard Molecular Technology Group and Lipper Center for
Computational Genetics. http://arep.med.harvard.edu

[35] Z. Zhang, A. Teo, B. Ooi, and K. Tan, “Mining deterministic
biclusters in gene expression data,” Proceedings of the fourth IEEE
Symposium on Bioinformatics and Bioengineering (BIBE’04), 2004,
pp. 283–292.

[36] SGD GO Termfinder.

 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

[37] J. E. Luna-Taylor and C. A. Brizuela, “A Multiobjective Genetic
Algorithm for the Biclustering of Gene Expression Data,” In
proceedings of the 3rd International Supercomputing Conference in
Mexico ISUM 2012.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation 6(2), 2002, pp. 182–197.

[39] E. Zitzler, L. Thiele, M. Laumanns, C.M. Foneseca, V. Grunert da
Fonseca, “Performance Assessment of Multiobjective Optimizers: An
Analysis and Review,” IEEE Transactions on Evolutionary
Computation 7(2), 2003, pp. 117–132.

http://arep.med.harvard.edu/
http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

